
Zero Dynamics

March 16, 2023

Consider system dynamics of the form

ẋ = f(x) + g(x)u, (1)

where x = [q, q̇]T , and an output of the form

y = h(q), (2)

which depends only on configuration variables. Because setting h(q) can only provide constraints on theM
actuated degrees of freedom, there exists a smooth real-valued function θ(q) for the (N −M) unactuated
degrees of freedom such that

[h(q);θ(q)] : Q̃ → RN (3)

is a diffeomorphism onto its image. Then the corresponding zero dynamics manifold T Q̃ is a smooth
2(N −M)-dimensional embedded submanifold of TQ, defined as

Z = {x ∈ T Q̃|y = h(x) = 0, ẏ = Lfh(x) = 0} (4)

Note that because
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where L stands for the Lie derivative, the relative degree of the output is at least two and thus ẏ = 0 is
needed in the definition of zero dynamics. The corresponding feedback control u can be decomposed into
two parts as

u = u∗ + v, (7)

where u∗ is the term that renders Z invariant, i.e. ÿ = 0, defined as

u∗(x) = −(LgLfh(q))
−1L2

fh(q, q̇) (8)

and v is the term that ensures the output y and its derivative vanish to zero under the designed control
law. A simple example of the control law would be a linear (PD) controller designed in the form
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−1[
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To simplify the zero dynamics, further coordinate transformation is performed. Set
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Note that the above relationship has used the following derivation,[
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Using the new coordinates [η1; ξ1;η2; ξ2], the system dynamics become
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and the zero dynamics become
y = η1 = 0, ẏ = η̇1 = η2 = 0
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Because the columns of g(x) are involutive, the inversion of the decoupling matrix in the zero dynamics
can be avoided by using a smooth scalar function γ, such that
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is a valid coordinate transformation and
Lgγ = 0. (17)

Additionally, it can be proved that γ can be explicitly computed to be the last (N −M) entry of D(q)q̇,
hence it can be assumed that

γ(q, q̇) = γ0(q)q̇. (18)
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The corresponding inverse transformation thus becomes

[
q
q̇

]
=


Φ−1(η1, ξ1)∂Φ

∂q
γ0

−1 [
η2

ξ2

]
 . (19)

Consequently, the system dynamics become
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where the corresponding inverse transformation becomes
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To relate the zero dynamics to the original system dynamics, further derivation can be conducted. Set
the last (N −M) rows of matrices and vectors D, C, G and q as DM , CM , GM and qM . Then we can
have
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