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The Equations of Motion of the two link biped model are derived according to the hybrid dynamics
note. The following code is supposed to run at least in MATLAB 2018b:

close all; clear;

% In this two link model, there are two links with one end of each inter-connected as hip

% and the other end free as point feet.

% The swing leg is labeled link 1, and the stance leg is labeled link 2.

% Refer to Figure 3.4 in the westervelt2007feedback book.

% However, notation of foot 1 and 2 are swapped.

syms g % Gravitational acceleration.

syms m % Mass of each link.

syms I % Moment of inertial of each link.

syms l % Length of each link.

syms l_c % Length from the COM of each link to the distal end.

syms q_1 % Angle from the stance leg to the swing leg, counter-clockwise.

syms q_2 % Angle from the vertical up direction to the stance leg, clockwise.

syms dq_1 % Time derivative of q_1.

syms dq_2 % Time derivative of q_2.

syms th_1 % Angle from the vertical up direction to the swing leg, clockwise.

syms th_2 % Angle from the vertical up direction to the stance leg, clockwise.

syms dth_1 % Time derivative of th_1.

syms dth_2 % Time derivative of th_2.

syms p_1x % Horizontal position of the foot of swing leg.

syms p_1y % Vertical position of the foot of swing leg.

syms dp_1x % Time derivative of p_1x.

syms dp_1y % Time derivative of p_1y.

syms p_2x % Horizontal position of the foot of stance leg.

syms p_2y % Vertical position of the foot of stance leg.

syms dp_2x % Time derivative of p_2x.

syms dp_2y % Time derivative of p_2y.

q_s = [q_1; q_2]; % Generalized coordinates.

dq_s = [dq_1; dq_2]; % Time derivative of generalized coordinates.

q_e = [q_s; p_2x; p_2y]; % Extended generalized coordinates.

dq_e = [dq_s; dp_2x; dp_2y]; % Time derivative of extended generalized coordinates.
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th_1 = - q_1 + q_2;

th_2 = q_2;

dth_1 = - dq_1 + dq_2;

dth_2 = dq_2;

p_2 = [p_2x; p_2y];

p_2c = p_2 + [l_c * sin(q_2); l_c * cos(q_2)];

p_1c = p_2 + [l * sin(q_2) + (l - l_c) * sin(q_1 - q_2); l * cos(q_2) - (l - l_c) * cos(q_1 - q_2)];

p_1 = p_2 + [l * sin(q_2) + l * sin(q_1 - q_2); l * cos(q_2) - l * cos(q_1 - q_2)];

dp_1 = jacobian(p_1, q_e) * dq_e;

dp_1c = jacobian(p_1c, q_e) * dq_e;

dp_2c = jacobian(p_2c, q_e) * dq_e;

% KE - Kinetic Energy, PE - Potential Energy.

% 1 - swing leg, 2 - stance leg.

KE1 = simplify(m / 2 * (dp_1c.’) * dp_1c + I / 2 * dth_1^2);

KE2 = simplify(m / 2 * (dp_2c.’) * dp_2c + I / 2 * dth_2^2);

KE = KE1 + KE2;

PE1 = simplify(m * g * p_1c(2));

PE2 = simplify(m * g * p_2c(2));

PE = PE1 + PE2;

% Stance phase.

D_s = simplify(jacobian(jacobian(KE, dq_s).’, dq_s));

C_s = simplify(jacobian(D_s * dq_s, q_s) - jacobian(D_s * dq_s, q_s).’ / 2);

G_s = simplify(jacobian(PE, q_s).’);

B_s = [diag(ones(1, length(q_s)-1)); zeros(1, length(q_s)-1)];

% Impact phase.

D_e = simplify(jacobian(jacobian(KE, dq_e).’, dq_e));

E = simplify(jacobian(p_1, q_e));

J_Ff = simplify(-(E / D_e * E.’) \ E * jacobian(dq_e, dq_s)); % F_f / \dot{q}_s^-

J_qedot = simplify(jacobian(dq_e, dq_s) + D_e \ E.’ * J_Ff); % \dot{q}_e^+ / \dot{q}_s^-

R = [-1, 0; -1, 1];

Delta_qs = R; %Delta_{q_s}

Delta_qsdot = [R zeros(2, 2)] * J_qedot; % Delta_{\dot{q}_s}
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