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The Linear Inverted Pendulum (LIP) model can be used to describe a point mass moving in the sagittal
plane via the support of a massless leg. It is commonly used in legged locomotion control as a template
. Its Equations of Motion (EoM) can be derived from the Lagrange’s equations or the Euler’s equations.
Note that only the sagittal plane movement is under consideration here, while movement in the frontal
plane can be taken care of similarly.

If the Lagrange’s equations are used, the Lagrangian can be written as

L = T − V =
1

2
mẋ2 +

1

2
mż2 −mgz (1)

where L is the Lagrangian, T represents the kinetic energy, V represents the potential energy, m is the
system mass, and x, z, ẋ and ż are the horizontal and vertical positions and velocities of the Center of Mass
(CoM) with respect to the ground contact point, respectively. According to the Lagrange’s equations, we
can get 
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∂ẋ
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∂ż

− ∂L
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⇒

{
mẍ = Fx

mz̈ +mg = Fz

(2)

where Fx and Fz are support forces provided by the massless leg to the point mass. Because the resultant
force can only be along the leg length direction, we have Fxz = Fzx. Therefore, the EoM can be simplified
to be

ẍ =
g + z̈

z
x (3)

If the CoM height is assumed to be constant, i.e. z = H and ż = z̈ = 0, a more simplified model can be
generated as

ẍ =
g

H
x (4)

If the Euler’s equations are used, we can have

L̇ = mgx (5)

where L is the angular momentum about the ground contact point. On the other hand, we can write the
angular momentum based on its definition as

L = Lc +mxż −mzẋ (6)

where Lc is the angular momentum about the Center of Mass (CoM). Note that the point mass assumption
is not necessary here. Take the derivative with respect to time on both sides of (6), we can have

L̇ = L̇c +mxz̈ −mzẍ (7)
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Combining (5) and (7) to cancel L̇, we can have a model similar to the one from the Lagrange’s equations,
whose state space expression can be written asẋ = v,

v̇ =
g + z̈

z
x− L̇c

mz
,

(8)

where v is the system’s horizontal velocity. From another perspective, we can also combine (5) and (6) to
get a model in state space as ẋ =

L

mz
+

ż

z
x− Lc

mz
,

L̇ = mgx,
(9)

Note that (8) and (9) are equivalent at this point, i.e. different forms of expressions about the same system.
Now let us start to make assumptions to get the reduced-order models. If the CoM height is assumed

to be constant, i.e z = H and ż = z̈ = 0, we can haveẋ = v,

v̇ =
g

H
x− L̇c

mH
,

(10)

and ẋ =
L

mH
− Lc

mH
,

L̇ = mgx,

or


ẋ = vs −

Lc

mH
,

v̇s =
g

H
x,

(11)

where vs = L/(mH) is a surrogate variable for the convenience of comparison between (10) and (11). Note
that at this point, (10) and (11) are still equivalent as long as the CoM height is constant. If the body
mass is further assumed to be point mass, i.e. Lc = 0, we can have{

ẋ = v,

v̇ =
g

H
x,

(12)

and ẋ =
L

mH
,

L̇ = mgx,
(13)

where (12) is the same as (4), which is the well-known LIP model that the literatures commonly refer to,
and (13) is called Angular momentum LIP (ALIP) model.

A further remark is that if Lc = 0 is not true, which is generally the case with real robot, (12) and (13)
are two different forms of approximation. However, (12) ignores the subtraction of L̇c from mgx and (13)
ignores the subtraction of Lc from L, while L̇c/mgx is much larger than Lc/L over a wide range of walking
velocities based on literature. Therefore, (13) has relatively less error. On the other hand, in (10), v has a
relative degree of one with respect to L̇c, while in (11), L has a relative degree of three with respect to L̇c.
Hence, v is more sensitive than L to the omission of Lc. Again, (13) is a better approximation than (12).

The LIP model in (12) can be analytically solved for a closed-form solution. Note that only the
homogeneous form is considered here, which is

ẍ = λ2x (14)

with λ =
√

g/H, while actuation at the contact point can also be added to yield the inhomogeneous form.
The corresponding characteristic function of the homogeneous form is s2 = λ2, whose roots are s1 = −λ
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and s2 = λ. Therefore, the general solution can be written as{
x(t) = C1e

λt + C2e
−λt,

ẋ(t) = C1λe
λt − C2λe

−λt,
(15)

where C1 and C2 are two constant coefficients related to the initial conditions. Set x(to) = xo and ẋ(to) = ẋo

as the initial conditions, then (15) can further yields{
xo = C1e

λto + C2e
−λto ,

ẋo = C1λe
λto − C2λe

−λto ,
⇒

{
C1 = e−λto(xo + ẋo/λ)/2,

C2 = eλto(xo − ẋo/λ)/2,

⇒


x(t) = xo

eλ(t−to) + e−λ(t−to)

2
+

ẋo

λ

eλ(t−to) − e−λ(t−to)

2
,

ẋ(t) = xoλ
eλ(t−to) − e−λ(t−to)

2
+ ẋo

eλ(t−to) + e−λ(t−to)

2
,

⇒

x(t) = xo cosh[λ(t− to)] +
ẋo

λ
sinh[λ(t− to)],

ẋ(t) = xoλ sinh[λ(t− to)] + ẋo cosh[λ(t− to)].

(16)

At the end of the single support phase, an instantaneous impact phase is usually applied to reset the
system for the next step. The reset map can be written as{

x+ = x− − l

ẋ+ = ẋ− (17)

where the superscript + and − indicates the beginning and ending moment of the single support phase,
respectively, and l represents the step length. Note that the continuity of velocity is assumed here, which
is an acceptable assumption but is usually not the case in reality due to the ground impact.
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